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Abstract

The fragmentation of blockchain ecosystems–driven by esoteric languages, distinct toolchains,
and the isolation of Web3 from the broader software stack–creates a high barrier to entry, and
limits developer participation. This challenge also confines use cases to typical blockchain ap-
plications observed in the market to date, and makes applications inherently harder to scale.
Hyperweb unifies this experience by providing a complete, end-to-end TypeScript ecosystem for
building decentralized applications, combining infrastructure, client tools, and smart contract
frameworks. This paper details a novel approach towards enabling powerful blockchain appli-
cation development using the World’s most popular programming language [1], expanding the
developer base and accelerating adoption. We present the Hyperweb Virtual Machine (HVM),
a novel virtual machine architecture for executing smart contracts written in TypeScript and
JavaScript. The protocol serves as an Interchain JavaScript Hub to provide developers methods
to control actions on other chains via the HVM. The stack encompasses several components
working together to serve as a multifaceted solution to a cohesive and universal web develop-
ment experience.
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1 Introduction

The blockchain ecosystem has evolved significantly, yet development remains complex and error-
prone. Hyperweb addresses this challenge by providing a unified virtual machine that enables
developers to write smart contracts in TypeScript and JavaScript, languages familiar to millions
of developers worldwide. This paper presents the architecture and implementation details of the
Hyperweb Virtual Machine (HVM), focusing on its key innovations in state management, cross-
chain execution, and developer experience.
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1.1 Ecosystem

Hyperweb’s ecosystem has made a significant impact on the Web2 and Web3 developer landscape,
with over 40 million total downloads across its tools. Hyperweb’s Web2 tools have been down-
loaded 10.7 million times, while Web3 tools lead with 27.6 million downloads, demonstrating
strong adoption across blockchain ecosystems. Utility libraries have also seen substantial traction,
with 1.89 million downloads, streamlining developer workflows. Key tools such as Cosmos Kit
(1.58M+ downloads), Telescope (5.29M+ downloads), and Chain Registry (6.09M+ down-
loads) have become essential for multi-chain application development. The Chain Registry further
highlights Hyperweb’s reach, supporting well over 200 chains [2]. Notably, Supabase, one of the
platforms leveraging Hyperweb’s database tooling, now manages nearly 2 million databases,
adding approximately 2,500 databases per day [3]. These figures underscore Hyperweb’s role in
bridging Web2 and Web3 development, lowering the barrier to entry, and enabling developers to
build scalable, interoperable applications with ease [4].

1.2 CAP Theroem

The CAP theorem, introduced by Eric Brewer in his keynote at the 2000 PODC conference
[5], states that a distributed system can provide at most two of the following three guarantees
simultaneously:

1. Consistency (C): Every read receives the most recent write or an error.

2. Availability (A): Every request receives a response, even if some nodes fail.

3. Partition Tolerance (P): The system continues to operate despite network partitions.

In practical terms, no distributed system can achieve all three properties fully; designers must
choose which two are most critical to their application, acknowledging trade-offs.

Consistency (C) Availability (A)

Partition Tolerance (P)

CA

APCP

CAP
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1.3 Shortage of Web3 Developers

One major hurdle facing blockchain ecosystems is the relative scarcity of experienced Web3 de-
velopers compared to the vast pool of traditional Web2 engineers. The specialized skill set re-
quired—ranging from smart contract programming and security audits to cryptographic key man-
agement—creates a high barrier to entry. Moreover, the fragmented toolchains and distinct language
dialects across different chains (e.g., Solidity, Rust, Move) deter many Web2 developers. Hyperweb
aims to alleviate this bottleneck by leveraging the ubiquitous familiarity of JavaScript and Type-
Script, thereby reducing onboarding friction. By unifying cross-chain execution under a single,
accessible VM model, Hyperweb broadens the potential developer base and accelerates adoption.

24k Web3 developers [6]
(< 0.1%)

28.7M developers [7]
(99.9%)

bc

Figure 1: Estimated ratio of active Web3 developers to all developers, illustrating the scarcity of
blockchain-savvy engineers.

1.3.1 Esoteric Programming Languages and Frameworks in Blockchain Ecosystems

Challenge: There are 28.7 million developers in the world [7], yet blockchain ecosystems rely
heavily on esoteric programming languages and frameworks that require deep, chain-specific ex-
pertise. This limits participation and discourages developers who are unfamiliar with these niche
tools. As a result, there are only 24,000 active Web3 developers globally [6], representing less than
0.1% of the total developer population.

Solution: Hyperweb bridges this gap by offering a JavaScript virtual machine and TypeScript
smart contract environment. This solution empowers the global community of 20 million JavaScript
developers [1, 7] to engage with blockchain technology, removing the steep learning curve posed by
esoteric languages.
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24k Web3 developers [6]
(< 0.1%)

28.7M developers [7]
(99.9%)

800X increase

in developer pool

JS Developers [1]
(67.7%)

Figure 2: Estimated ratio of active Web3 developers to JavaScript (Web2) developers, illustrating
the opportunity to increase in developer population.

Define the sets:

SWeb3 : Set of active Web3 developers,

SJS : Set of active JavaScript developers,

f : SJS → SWeb3 : Mapping that enables JavaScript developers to become Web3 developers.

For any developer d ∈ SJS, let f(d) = d′, where:

d : A developer skilled in JavaScript,

d′ : The same developer, after acquiring Web3 development skills through f.

Introduce a parameter ∆, where:

∆ ∈ [0, 1], ∆ = 1 =⇒ Perfect alignment with JavaScript syntax (no additional learning curve),

and

∆ = 0 =⇒ Complete deviation from JavaScript syntax (entirely new concepts to learn).

The transformation induced by f depends on ∆, where:

S′

Web3 = f(SJS,∆),
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and each d′ ∈ S′

Web3 corresponds to a d ∈ SJS transformed with a cognitive effort proportional to
1−∆.

Initially, we observe:
SWeb3 ⊂ SJS, and |SWeb3| ≪ |SJS|.

After applying f , the expanded set satisfies:

SWeb3 ⊆ S′

Web3 and |S′

Web3| ≈ |SJS| ·∆.

Thus, the effectiveness of the transformation f and the size of S′

Web3 are directly influenced by
∆.

1.4 Developer Experience Challenges

The developer experience in Web3 presents several significant challenges that hinder rapid adoption
and efficient application development. Below, we outline these challenges and how our approach
seeks to resolve them.

1.4.1 Fragmented Ecosystem

Challenge: The Web3 ecosystem consists of a variety of blockchains, each with its unique archi-
tecture, tooling, and programming languages. Developers face steep learning curves when switching
between chains or working on multichain applications.

Solution: By introducing Interchain JavaScript, we unify the development experience across het-
erogeneous chains. Developers can write applications in a familiar language while leveraging shared
tooling for contracts and frontends.

1.4.2 Limited Interoperability

Challenge: Ensuring seamless communication between different blockchains remains a significant
hurdle, requiring developers to handle complex cross-chain messaging and state synchronization
manually.

Solution: Interchain JavaScript and the HVM will provide a unified execution environment that
abstracts cross-chain interactions, enabling developers to focus on application logic rather than
infrastructure concerns.

1.4.3 Poor Tooling and Documentation

Challenge: Developers often encounter poorly documented tools and fragmented resources, mak-
ing it difficult to onboard new teams or scale development efforts.

Solution: Our comprehensive suite of tools, including InterchainJS and Hyperweb, comes with
detailed documentation and tutorials, ensuring a smooth onboarding experience for developers of
all skill levels.
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1.4.4 Security Risks

Challenge: Building secure applications requires developers to be aware of numerous pitfalls,
including reentrancy attacks, mismanaged keys, and vulnerabilities in third-party dependencies.

Solution: Our framework incorporates built-in security primitives, such as security tooling and
safe contract templates, reducing the likelihood of common vulnerabilities.

1.4.5 Cross-Chain Application Complexity

Challenge: Developers must write, deploy, and maintain contracts separately for each blockchain,
adding complexity in heterogeneous ecosystems with distinct languages and tools.

Solution: A write-once, run-everywhere approach enables developers to write contracts in In-
terchain JavaScript and execute them across multiple chains using HVM, significantly reducing
complexity and maintenance overhead.

1.4.6 Web2 and Web3 are Isolated

Challenge: To have a truly scalable, accessible, and decentralized system, different parts of the
infrastructure stack must leverage different technologies. For example, in Web3, indexers are typi-
cally added as an after thought to address the cap theorem 1.2.

Solution: Treating technologies such as indexers as first class primitives abstracts away com-
plexity, enabling teams to create event-driven applications that handle everything from off-chain
computation to cross-chain transactions with the same intuitive developer experience. The result
is a unified full-stack ecosystem that combines Web2’s proven performance with Web3’s powerful
composability, making decentralized development feel natural and infinitely scalable.

1.4.7 Motivation

By addressing these challenges, we aim to create a developer-centric ecosystem that fosters innova-
tion and simplifies the development of scalable, secure, and interoperable Web3 applications.

1.5 Web3 in the Context of the CAP Theorem

Using the CAP theorem, we can describe Web3 and its relationship with Web2 as follows:

Web3 as C and P

Web3 prioritizes:

• Consistency (C): Ensuring verified and tamper-proof data through decentralized consensus
mechanisms.

• Partition Tolerance (P): Maintaining decentralized data that continues to operate under
network partitions or disruptions.

However, by focusing on C and P , Web3 systems often sacrifice Availability (A), as achieving
consistency in a decentralized network introduces latency (e.g., block finality and consensus delays).
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Web2 as C and A

Web2 systems prioritize:

• Consistency (C): Delivering reliable, consistent responses from centralized databases.

• Availability (A): Ensuring responsiveness and low-latency experiences.

Web2 systems deprioritize Partition Tolerance (P), as centralization provides resilience
through redundancy rather than decentralization.

Web2 Supporting Web3 Scalability

Web2 technologies, such as indexers and caching solutions, act as intermediaries that inject Avail-
ability (A) into Web3 workflows. These tools:

• Organize and cache data from decentralized networks to provide fast and scalable access for
read operations.

• Enable scalable and efficient access to Web3 data for reads, while preserving C (Consistency)
and P (Partition Tolerance) during write operations.

By properly delegating read optimization to Web2 technologies and reserving the rigor of C and
P for writes, Web3 achieves scalability without compromising its core principles.

Consistency (C) Availability (A)

Partition Tolerance (P)

Web2

Web3

Hyperweb

2 Interchain JavaScript

Interchain JavaScript represents a paradigm shift in the development of Web3, unifying heteroge-
neous blockchain ecosystems under a single, universal programming model. This vision draws from
the analogy of JavaScript in the conventional Internet – a language capable of running across all
websites, providing universal utility.

In the context of Web3, where blockchains are often referred to as the ”Internet of Blockchains”,
Interchain JavaScript enables seamless interaction across all chains, breaking down interoperability
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barriers and facilitating frictionless communication between diverse blockchain ecosystems. By
leveraging Interchain JavaScript, developers can focus on crafting innovative solutions rather than
grappling with the intricacies of disparate blockchain protocols.

2.1 Core Components of the Interchain JavaScript Stack

Hyperweb Virtual Machine (HVM): At the core of Interchain JavaScript is the HVM, a
versatile virtual machine designed to execute JavaScript. Formally, this execution model can be
expressed as:

Echain(PJS) → Rchain

Where:

• Echain: Execution environment of a specific blockchain.

• PJS: JavaScript program to be executed.

• Rchain: Resulting state/output from the execution.

Signing Client (InterchainJS): InterchainJS serves as the core library for signing and interact-
ing with multiple blockchains using an adapter pattern. It simplifies key management and supports
universal signing mechanisms, including EIP712 and Cosmos SDK transactions.

SDK Clients (Telescope): Telescope is the frontend companion for InterchainJS. It is a Type-
Script transpiler for Cosmos SDK Protobuffers, allowing developers to generate blockchain-specific
SDKs for seamless interaction. It enables automatic TypeScript bindings, reducing the complexity
of working with blockchain protocols, UI frameworks, and state management.

Wallet Adapters (Interchain Kit): Interchain Kit provides a universal wallet adapter sup-
porting multiple blockchain wallets, such as Keplr, Ledger, and MetaMask. It simplifies wallet
connections across multiple networks, including both Ethereum and Cosmos ecosystems.

Unified Frontend Framework (Interchain UI): A cross-framework library of UI components
tailored for interchain apps with first-class support for React and Vue. Underlying compiler allows
to compile to other UI frameworks.

Starter Kits (Create Interchain App): Developers can set up a modern Interchain app in
seconds with create-interchain-app by running a single command. Projects come preloaded
with InterchainJS, Interchain Kit, and Interchain UI.

Chain Information (Chain Registry): The Chain Registry is a unified repository that provides
standardized blockchain metadata, including token symbols, logos, and IBC denominations. It
streamlines chain discovery and integration into decentralized applications.

Testing Frameworks (Starship): Starship is a unified development and testing environment
that enables developers to simulate blockchain ecosystems. It facilitates end-to-end testing of
interchain applications, improving reliability and accelerating development cycles.
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Composability Across the Stack: The architecture enables seamless integration of smart con-
tracts, user interfaces, and data layers, abstracting away blockchain-specific complexities. This
modular approach is represented as:

A = {(C1,U1), (C2,U2), . . . , (Cn,Un)}

Where A is the application composed of n contract-interface pairs.

2.1.1 Key Advantages of Interchain JavaScript

Universal Compatibility: By enabling JavaScript to execute universally, developers are no
longer constrained to ecosystem-specific languages. This compatibility ensures:

• Consistency in application logic.

• Reduced learning curves for developers.

Developer-Centric Approach: Interchain JavaScript allows developers to write in a familiar
language across the entire Web3 stack, from smart contracts to frontends. The unification of tooling
eliminates fragmentation and accelerates innovation.

Scalability and Extensibility: The modular architecture supports seamless scaling by adding
new components or chains, preserving the integrity of the global application logic:

A → A′ where A′ = A ∪ {(Cn+1,Un+1)}

Future-Proofing Web3: Interchain JavaScript positions Web3 as a true ”Internet of Blockchains,”
embodying the principles of interoperability, universality, and inclusivity that made the conventional
internet successful.

2.1.2 Formalizing the Goal

The vision of Interchain JavaScript can be summarized as:

IJ S = (HVM, IUI, T )

Where IJ S combines:

• HVM: JavaScript virtual machine for execution.

• IUI: Interchain UI framework for frontend development.

• T : Suite of tools supporting end-to-end application development.
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3 System Architecture

3.1 Overview

Hyperweb’s architecture consists of four primary components:

• Contract Execution Environment

• State Management System

• Event Processing System

• Cross-Chain Communication Layer

The system is designed to provide deterministic execution across different blockchain environ-
ments while maintaining the flexibility and ease of use that TypeScript and JavaScript developers
expect.

4 State Management System

4.1 State Storage

The state management system utilizes an Immutable AVL (IAVL) tree structure for efficient state
storage and verification. This implementation provides:

• O(log n) access and modification complexity

• Cryptographic verification of state transitions

• Efficient proof generation for cross-chain communication

5 Event System

5.1 Event Architecture

The event system implements a type-safe approach to event emission and handling:

1 type Event = {

2 kind: string ;

3 data: any;

4 timestamp : number ;

5 blockHeight : number ;

6 }

Listing 1: Event

5.2 Event Processing

Events are processed through a pipeline that ensures:

• Type safety at compile time

• Efficient serialization for cross-chain communication

• Automatic event attribution in the SDK context
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6 Contract Lifecycle Management

6.1 Contract Definition

Contracts in Hyperweb follow a class-based pattern:

1 export default class Contract extends BaseContract {

2 constructor (ctx: Context , state : State) {

3 super(ctx);

4 this.ctx = ctx;

5 this.state = state;

6 }

7 }

Listing 2: Base Pattern

6.2 Decorator Usage

The decorator system provides crucial contract lifecycle and access control features:

• Initialization control through @instantiate

• Access management via @onlyOwner

• Custom decorator support for extended functionality

7 HVM

The Hyperweb protocol introduces a novel approach to achieving genuine write-once, run-everywhere
semantics for smart contracts and decentralized applications. At its core, Hyperweb defines a
JavaScript-based execution environment, HVM, which operates natively on the Hyperweb chain.
This enhanced VM supports serialization of the entire execution context, enabling the preservation
and restoration of the environment at arbitrary points in the future. On external blockchains,
an additional execution engine, referred to as an interpreter, interprets the same JavaScript code
but is tailored to that respective chain’s runtime (e.g., an EVM-based chain, CosmWasm, a Solana
environment, etc). By unifying these execution contexts, developers write their logic once (in Type-
Script, compiled down to JavaScript), and then seamlessly execute their code across a variety of
heterogeneous chains without manual adaptation. This allows for several methods of computing
using different variations of transmitted substate, and code.

To reason about the correctness, performance, and security properties of Hyperweb’s universal
VM abstraction, consider that each blockchain’s state transition function can be modeled as:

f : S × I → S

where S is the set of all possible states of a particular chain, and I represents the input (transactions,
messages, or other stimuli). In a traditional single-chain setup, f is fixed to a single VM or
interpreter, but here we instead conceive a global transition function:

F : S1 × S2 × · · · × Sn × I → S1 × S2 × · · · × Sn

12



EVM

contract xyz
Interpreter A

SOL

program abc
Interpreter B

contract
Hyperweb

R1

R2

R3

JS

Result

JS

Result

Figure 3: Hyperweb architecture diagram: multiple chains (EVM, SOL) each have their own inter-
preter and can exchange JavaScript calls and results with Hyperweb. Relayers R1, R2, R3 facilitate
communication between Hyperweb and the external chains by connecting to the communication
channels between Hyperweb and each chain. A single TypeScript/JavaScript contract (MyCon-
tract) can coordinate logic across all connected chains.

for n distinct chains, each potentially running a different VM environment. Hyperweb integrates
these states and interpreters into a unified logical environment. Essentially, F factors through a
per-chain interpreter—HVM for the Hyperweb chain, and an interpreter for each foreign chain—and
ensures that the same codebase drives state transitions everywhere.

A key challenge that arises is handling asynchronous cross-chain invocations. If a contract on the
Hyperweb chain needs data from a contract deployed on another chain, it can issue a cross-chain call
and eventually await its result. However, blockchains generally operate in a synchronous manner:
a transaction must be fully determined at the time of execution. To reconcile these paradigms,
we model cross-chain calls as deferred computations. We can represent a cross-chain call as a
promise-like construct:

P : X → Y

where X is the initiating chain’s local request and Y is the eventual result resolved by the target
chain.

This asynchronous abstraction means that a cross-chain promise may resolve at some future
point in time. Execution that involves waiting on data from another chain will effectively pause
until the promise resolves. To maintain safe execution semantics, Hyperweb enforces that any
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cross-chain promise must be settled before the state transition is finalized. HVM achieves this by
leveraging its serialization capabilities to suspend the current execution context when a promise is
issued:

Suspend(EContext) → σ

where, EContext is the execution context. Once the promise Pij is resolved, HVM restores the
execution context from the snapshot, σ and resumes execution seamlessly:

Resume(σ)

This ensures that all asynchronous operations are handled gracefully, with execution contexts
preserved accurately across suspension and resumption points. Consequently, the final state transi-
tion F ′(S1, . . . , Sn, I) incorporates the results of all resolved promises, maintaining consistency and
reliability in the state management process.

We may represent the combined state transition after all cross-chain dependencies have resolved
as:

F ′(S1, . . . , Sn, I) = G(S1, . . . , Sn, I)

where G denotes the state transitions once all cross-chain calls have completed. this ensures
that finality is only reached after the required asynchronous computations are concluded.

in essence, the universal VM (formed by the interplay of HVM on Hyperweb and interpreters
on other chains) provides a uniform interface for:

1. state definitions using a consistent schema (e.g., Item, Map).

2. event emission that is chain-agnostic, ensuring identical developer experience and tooling
compatibility.

3. use of decorators allow developers to specify conditions such as @instantiate or @onlyOwner

Mathematically, the advantage of this approach is a reduction in complexity. rather than rea-
soning about a separate VM fi for each chain ci, the developer can now think of a single global
interpreter. we let:

I = {I1, I2, . . . , Im}

represent the set of interpreters, where each Ij is an interpreter instance running on a distinct
chain, and define:

M = (H, I) where H = HVM.

Where, M represents the meta-machine that combines the HVM (H) and the distributed set
of interpreters (I). This structure allows the execution semantics to be unified across chains while
maintaining flexibility and chain-specific adaptations through the interpreters.

The execution semantics can thus be unified into a single abstract machine model:

funified : (S1 × · · · × Sm)× I → (S1 × · · · × Sm)

with the guarantee that all logic, state manipulation, and event emission follow a single coherent
specification, just translated across multiple low-level runtimes.
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This framework around asynchronous calls, unified state transitions, and a single codebase in-
terpreted in multiple environments demonstrates a protocol that reduces the developer’s mental
overhead, simplifies the cross-chain lifecycle, and enables powerful features like asynchronous call-
backs and secure, capability-based access control.

7.0.1 Extended State and Input Spaces

As previously mentioned, each chain ci in a collection of n heterogeneous blockchains has a state
space Si. we can consider the product space:

S = S1 × S2 × · · · × Sn

as the global state encompassing all chains simultaneously. likewise, let I represent the global input
space, where an input I ∈ I may include operations to be applied across multiple chains.

The universal transition function was defined as:

F : S × I → S.

however, this function F should be viewed not as monolithic, but as composed of individual per-
chain functions coupled by cross-chain communications. formally, we can write:

F (S1, . . . , Sn, I) = (f1(S1, I1), f2(S2, I2), . . . , fn(Sn, In))

where each fi is the local state transition function for chain ci, and Ii is the subset of inputs relevant
to that chain. the difficulty arises when these Ii and consequently fi become dependent on outputs
from other chains.

7.0.2 Asynchronous Behavior

To handle asynchronous calls, consider a scenario where chain ci issues a request that must be
fulfilled by chain cj . Instead of fi producing a final state immediately, it produces a deferred state
update or a promise-like variable. We may represent this deferred outcome as:

fi(Si, Ii) = S′

i ⊕ Pij

where Pij denotes a promise awaiting resolution from chain cj . The operator ⊕ indicates that the
resulting state S′

i is not final; it is augmented with a placeholder for future data.
The enhanced runtime environment incorporates robust snapshotting capabilities, allowing the

entire execution context—including the call stack, variable states, and pending promises—to be
serialized at the point where Pij is issued. This serialized state can later be deserialized to seamlessly
restore execution, ensuring that promises are resolved correctly without loss of context. This
mechanism guarantees that execution involving waiting on data from another chain can be paused
and resumed safely, maintaining consistent and secure execution semantics. This allows hyperweb
to record the environment at the point where Pij is issued and restore it once the promise is resolved,
ensuring seamless continuation of execution.

chain cj upon processing its own transitions, eventually resolves Pij . once the promise Pij is
resolved and all other cross-chain dependencies have completed, we can define:

F ′(S1, . . . , Sn, I) = G(S1, . . . , Sn, I)

where G represents the state transitions after all promises are resolved. this ensures that the final
state is determined only after the required asynchronous computations are concluded.
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7.0.3 Cross-Chain Code and State Distribution

See fig 4, beyond the baseline model of remote invocation, hyperweb defines a systematic approach
for distributing code and state across multiple chains. let C represent the set of available code
modules. consider a source chain ci with state Si, and a target chain cj with interpreter Ij and
state Sj . let S

′ ⊆ Si denote a chosen substate of the source chain’s state.
hyperweb supports three canonical modes of code and state distribution:

1. code-only execution: given a code subset C′ ⊆ C and a target chain cj with local state Sj ,
hyperweb executes C′ against Sj without transferring any additional state. formally:

∆code : (C
′, cj) 7→ (Sj

C
′

−→ Ŝj)

where Ŝj represents the state of cj after executing C′ on Ij .

2. combined code and substate bundle: for operations requiring a specific subset of state,
hyperweb constructs a bundle (C′, S′) where S′ ⊆ Si. this bundle is shipped to cj . the
interpreter Ij then applies C′ to (Sj ∪ S′). formally:

∆bundle : (C
′, S′, cj) 7→ ((Sj ∪ S′)

C
′

−→ Ŝ′

j)

this ensures that all necessary data is co-located with the code for that invocation.

3. Contract Deployment: Rather than a one-off execution, Hyperweb allows for deploying
contracts permanently or temporarily onto target chains by leveraging the interpreter’s con-
tract factory and proxy capabilities. Specifically, the deployment process involves a deploy-
ment operation ∆deploy that utilizes the interpreter’s contract factory to install (C′, S′) onto
cj. This installation can generate either a persistent or temporary child contract (or a new
account in account-based chains) through the interpreter’s factory and proxy mechanisms,
thereby serving as the runtime or execution environment for your contract’s logic. Addition-
ally, to manage the registry of active contracts, users can pay rent to the interpreter contract
to maintain their contracts within its registry over time. Formally, this is represented as:

∆deploy : (C′, S′, cj) 7→ (I∗

j , Ŝ
′′

j , Rj)

where:

• I∗
j signifies that the interpreter at cj now hosts the deployed contract—either as a per-

sistent runtime or a temporary execution environment—and its associated state.

• Ŝ′′
j represents the updated state of chain cj after deployment.

• Rj denotes the rental agreement or registry entry for the deployed contract, ensuring it
remains active within the interpreter’s registry.

This allows for the flexibility of incoming executions to share global ephemeral, temporary state,
or to maintain persistent state. Remote executions are initially restricted to be pure functions,
whereby a subset of the function signature’s parameters may be resourced defined to be available
on the destination chain. Although importing modules is an open research question.

From an object capabilities perspective [8], each of these distribution mechanisms can be viewed
as conferring specific, fine-grained rights to code and data. Let C denote the set of all possible
capabilities, where each capability c ∈ C defines the right to access or modify specific resources or
execute specific actions. These mechanisms are described as follows:
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1. Code-Only Execution: Grants the recipient interpreter the capability cexec ∈ C to perform
a known set of computations against its local state Sj . Formally:

cexec : Sj → S′

j

where S′
j represents the state of the target chain cj after executing the granted capability.

2. Bundling Code with Substate: Transfers a combined capability cbundle = (C′, S′) where
C′ ⊆ C and S′ ⊆ Si, granting access to a well-defined portion of the source chain’s state.
Formally:

cbundle : (Sj ∪ S′) → S′′

j

ensuring that the invoked logic operates with the authority it needs.

3. Contract Deployment: Permanently bestows the remote interpreter with a persistent ca-
pability cdeploy ∈ C to host and execute the deployed contract’s logic and state:

cdeploy : Sj → (I∗

j , S
′′

j )

where I∗
j indicates the interpreter Ij now persistently hosts the deployed contract.

7.0.4 Object Capabilities Security Model

This approach models the object capability security model [8], which directly contrasts with identity-
based access control (IBAC), where rights are tied to an actor’s identity. Instead, authorization-
based access control (ABAC), as implemented with object capabilities, decouples authority from
identity, leading to several measurable security advantages:

• Elimination of Identity Verification Complexity: In IBAC, access control depends on
verifying the identity of the sender:

verify(id) : Actor → Boolean

and mapping it to permissions. This introduces risks of spoofing and privilege escalation. In
contrast, ABAC relies on direct possession of capabilities (c ∈ C), which are unforgeable and
self-contained.

• Minimized Authority Leakage: Each capability explicitly encodes the allowable actions,
ensuring the principle of least authority (PoLA):

∀c ∈ C, scope(c) ⊆ R

where C is the set of capabilities, scope(c) denotes the set of operations authorized by capa-
bility c, and R represents the resources required for execution.

In IBAC, broad identity-based permissions often lead to over-privileged actors.

• Formal Measurability: Capabilities provide a mathematically auditable chain of delegation:

cdeleg : Cparent → Cchild.

This ensures that authority transfer is explicit and traceable, unlike IBAC, where auditing
identity mappings can be opaque.
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By modeling cross-chain interactions through capabilities, Hyperweb ensures secure and efficient
execution semantics. For example, a cross-chain invocation using a capability cx is defined as:

cx : (Si, Sj) → S′

j

where:

• Si: The state of the source chain ci, representing the initial conditions and data involved in
the invocation.

• Sj: The current state of the target chain cj, prior to the execution of the capability cx.

• S′
j: The resulting state of the target chain cj after executing cx. This state reflects the updates

applied through the invoked logic.

In this framework, cx operates within explicitly defined bounds, ensuring that only authorized
state transitions are performed. This approach eliminates the need for runtime identity checks or
additional trust assumptions, as authority is encapsulated directly in the capability.

Capabilities also adhere to the principle of least authority (PoLA), ensuring that their scope is
limited to necessary resources:

∀c ∈ C, scope(c) ⊆ Rreq.

Where:

• c ∈ C: Represents a specific capability from the set of all capabilities.

• scope(c): The set of actions and resources explicitly defined as accessible by the capability c.

• Rreq: The minimal set of resources necessary to perform the intended operation.

By adhering to these formal constraints, Hyperweb’s capability-based approach ensures that
authority is explicitly defined, reducing security risks and operational overhead.

7.0.5 State Modification

Understanding which components of the system’s state are modified during contract deployment
and execution is crucial for maintaining consistency and security across chains. Specifically:

• Contract State S′: This represents the subset of the source chain’s state essential for the
contract’s operation. When deploying a contract, S′ may include configurations, permissions,
or initial data required by the contract logic.

• Interpreter State Ij : Deploying a contract modifies the interpreter’s state on the target
chain cj . Specifically, I∗

j denotes the updated state of the interpreter after hosting the new
contract, ensuring it can manage and execute the contract’s logic consistently.

• Global State S: The deployment operation ∆deploy contributes to the global state transition
by integrating the new contract into the ecosystem, thereby altering the collective state S =
S1 × S2 × · · · × Sn across all chains.
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This delineation of state modifications ensures that deployments are executed with precision and
that each interpreter maintains an accurate and secure execution environment for the contracts it
manages.

Combined with the enhanced snapshotting capabilities of the underlying runtime, these distri-
bution mechanisms allow Hyperweb to serialize and restore execution environments at well-defined
checkpoints. This capability enables more sophisticated cross-chain interactions, such as:

1. Replay of Computations: By restoring from a snapshot, Hyperweb can replay computa-
tions to ensure consistency and correctness across chains.

2. Multi-Step Workflows: Complex workflows involving multiple cross-chain calls can be
managed by serializing the execution state at each step, allowing for precise control and
recovery.

3. Fault Tolerance: In the event of failures or interruptions, the system can restore the execu-
tion context from the last snapshot, minimizing disruption and ensuring reliable operation.

Hyperweb can record the environment at the point where a promise is issued, and subsequently
restore it once cross-chain dependencies are resolved. this facilitates scenarios such as replaying
computations from known snapshots or orchestrating multi-step workflows across multiple chains,
all while preserving the object-capability discipline.

7.0.6 Execution Context Serialization and Restoration

A pivotal enhancement in HVM is its ability to serialize and deserialize the entire execution context.
This includes the current state of the call stack, local and global variables, and the status of all
pending promises. When a cross-chain promise Pij is issued, HVM captures a snapshot of the
execution environment:

Snapshot = Serialize(EContext)

This snapshot is stored securely and can be transmitted or stored as needed. Once the promise
Pij is resolved by chain cj , HVM can restore the execution context from the snapshot:

EContext = Deserialize(Snapshot)

This restoration ensures that the execution can continue precisely from where it was paused,
with all variables and states intact. This capability is fundamental for maintaining the integrity of
asynchronous operations and ensuring that the system can recover gracefully from interruptions or
delays in cross-chain communications.

7.1 Computational Metering

The chain’s VM uses a computational metering mechanism to ensure predictable execution limits
for smart contracts. Metering is achieved via an interrupt handler implemented in the underlying
runtime. This handler enforces an upper bound on execution steps, represented as maxSteps, which
can be dynamically configured.
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7.1.1 Step Counting and Interrupt Handling

The metering process integrates a step counter into the runtime. Each instruction executed by
the VM increments the counter. When the counter exceeds maxSteps, the runtime triggers an
interrupt, terminating the execution. Let S denote the current step count:

S = S0 +
n
∑

i=1

δi,

where δi represents the step increment for the i-th instruction. The interrupt condition is defined
as:

S > maxSteps =⇒ terminate execution.

7.1.2 Contract Execution with Metering

To demonstrate the metering system, we tested the HVM with both finite and infinite loop con-
structs in a sample contract. The state transition function f for metered execution is defined
as:

f(S, I) =

{

S′, if S + δ ≤ maxSteps,

error, otherwise.

For example, consider the following TypeScript contract with a finite loop and an infinite loop:

1 export default class MeteringContractTest {

2 testWhileLoop(limit ) {

3 let count = 0;

4 let sum = 0;

5 while (count limit ) {

6 sum += count ;

7 count ++;

8 }

9 return sum ;

10 }

11

12 testInfiniteLoop() {

13 let count = 0;

14 while (true) {

15 count ++;

16 }

17 }

18 }

Listing 3: Metering Contract

When executing the finite loop function testWhileLoop, the step counter increments until the
specified limit is reached. For limit = 10, the expected sum result is computed as:

result =

9
∑

i=0

i = 45.

For the infinite loop function testInfiniteLoop, the step count eventually exceeds maxSteps,
triggering the interrupt handler. The interrupt handler guarantees that runaway computations are
safely terminated, preserving the integrity of the blockchain state and preventing denial-of-service
attacks.
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7.1.3 Dynamic Metering Policies

The maxSteps value can be:

• Static: Hardcoded as a constant (e.g., 1000).

• Dynamic: Configured based on gas supplied by the user.

• Governance-Driven: Determined via on-chain governance.

In the future, we may make enhancements to integrate dynamic gas pricing models, adjusting
maxSteps proportionally to the gas supplied. The relationship can be expressed as:

maxSteps = α · gas,

where α is a scaling factor defined by system parameters.

Figure 4: Sequence diagram illustrating HVM system’s interaction with EVM, Solana, and
CosmWasm blockchains. It demonstrates how the Hyperweb contract manages remote calls to
interpreters on each chain and merges the results into a unified response.

8 Conclusion

The fragmentation of blockchain development has created a barrier to mainstream adoption, re-
stricting innovation and limiting developer participation. Hyperweb represents a significant step
forward in software development, providing a robust and developer-friendly platform for building
a new wave of applications. By serving as the Interchain JavaScript Hub, Hyperweb acts as a
unifying layer that seamlessly bridges Web2 and Web3, bringing developers together to build the
next generation of the Web and the Internet as an open, interoperable ecosystem. By abstract-
ing blockchain complexity and integrating familiar development paradigms, Hyperweb significantly
lowers the entry threshold for millions of developers. This approach not only expands the reach of
decentralized applications but also catalyzes a new era of scalable, user-centric innovation and use
cases. The mass adoption of blockchain depends on an untapped source of developers who have
yet to enter the space. The Web’s evolution continues only when developers of all backgrounds can
seamlessly contribute to both decentralized and traditional applications.

21



9 Bibliography

References

[1] S. Overflow, “Most popular technologies,” 2020, released: 2020. [Online]. Available:
https://insights.stackoverflow.com/survey/2020#most-popular-technologies

[2] Hyperweb, “Chain registry,” 2025, accessed: 2025-01-30. [Online]. Available:
https://github.com/hyperweb-io/chain-registry

[3] Supabase, “Supabase general availability,” 2025, accessed: 2025-01-30. [Online]. Available:
https://supabase.com/ga

[4] Hyperweb, “Hyperweb download count,” 2025, accessed: 2025-01-30. [Online]. Available:
https://github.com/hyperweb-io/lib-count

[5] E. Brewer, “Towards robust distributed systems (podc keynote),” in Pro-
ceedings of the Nineteenth Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC), Portland, OR, USA, July 2000, co-Founder
& Chief Scientist, Inktomi; Professor, UC Berkeley. [Online]. Available:
https://sites.cs.ucsb.edu/∼rich/class/cs293b-cloud/papers/Brewer podc keynote 2000.pdf

[6] E. Capital, “Electric capital developer report,” 2024, accessed: 2024-12-26. [Online]. Available:
https://www.developerreport.com/

[7] S. R. Department, “Worldwide developer population 2023,” 2023, released: August 2023. [On-
line]. Available: https://www.statista.com/statistics/627312/worldwide-developer-population/

[8] M. Miller, “Robust composition: Towards a unified approach to access control and
concurrency control,” 2006, chief Scientist of Agoric Systems. [Online]. Available:
https://jscholarship.library.jhu.edu

22

https://insights.stackoverflow.com/survey/2020#most-popular-technologies
https://github.com/hyperweb-io/chain-registry
https://supabase.com/ga
https://github.com/hyperweb-io/lib-count
https://sites.cs.ucsb.edu/~rich/class/cs293b-cloud/papers/Brewer_podc_keynote_2000.pdf
https://www.developerreport.com/
https://www.statista.com/statistics/627312/worldwide-developer-population/
https://jscholarship.library.jhu.edu

	Introduction
	Ecosystem
	CAP Theroem
	Shortage of Web3 Developers
	Esoteric Programming Languages and Frameworks in Blockchain Ecosystems

	Developer Experience Challenges
	Fragmented Ecosystem
	Limited Interoperability
	Poor Tooling and Documentation
	Security Risks
	Cross-Chain Application Complexity
	Web2 and Web3 are Isolated
	Motivation

	Web3 in the Context of the CAP Theorem

	Interchain JavaScript
	Core Components of the Interchain JavaScript Stack
	Key Advantages of Interchain JavaScript
	Formalizing the Goal


	System Architecture
	Overview

	State Management System
	State Storage

	Event System
	Event Architecture
	Event Processing

	Contract Lifecycle Management
	Contract Definition
	Decorator Usage

	HVM
	Extended State and Input Spaces
	Asynchronous Behavior
	Cross-Chain Code and State Distribution
	Object Capabilities Security Model
	State Modification
	Execution Context Serialization and Restoration

	Computational Metering
	Step Counting and Interrupt Handling
	Contract Execution with Metering
	Dynamic Metering Policies


	Conclusion
	Bibliography

